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Equations of state of a dilute gas under a heat flux
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Thermal and caloric equations of state for a dilute gas under a heat flux are used to provide a
possible microscopic interpretation of temperature in nonequilibrium states. Two possible experi-
ments in which this nonequilibrium temperature could be shown are discussed. They include the
study of the Doppler broadening of spectral lines, and of the velocity of long sound waves, both in
a nonequilibrium situation characterized by a steady heat flux.
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I. INTRODUCTION

Recent theories in nonequilibrium thermodynamics
[1-5] have proposed the use of a generalized nonequi-
librium entropy depending not only on the classical vari-
ables but also on the dissipative fluxes, as, for instance,
the heat flux. These so-called extended thermodynamic
theories yield for a monatomic ideal gas, up to second
order in the heat flux q, an entropy of the form

r

s (u,v,J) =seq(u,v)—2/\%J-J. (1)
Here, s is the specific nonequilibrium entropy, seq the
specific local-equilibrium entropy, u and v = p~! are the
specific internal energy and specific volume, respectively,
T the local-equilibrium absolute temperature, A the ther-
mal conductivity, 7 the relaxation time of the heat flux
q, and J = vq. We have written the entropy function in
terms of J rather than of q because, as it is well known in
classical thermodynamics, the entropy must be expressed
in terms of extensive variables in order to be a thermo-
dynamic potential.

Some comments are in order referring to Eq. (1).
It must be taken into account that s(u,v,J) is a phe-
nomenological macroscopic function which coincides with
the Boltzmann entropy of the kinetic theory of gases in
the truncated form limited to the thirteen-moment devel-
opment proposed by Grad [6,7]. Some authors have pro-
posed calling the phenomenological s(u,v,J) a quasien-
tropy, or calortropy, to emphasize the difference between
the microscopic Boltzmann entropy.

The differential of (1) may be written as

ds = 0 du + 70~ 'dv — —2-J . dJ, (2)

AT?
where § and 7 are given by

Os Os
0t = (—) , 70! = (—) . 3)
ou v ov ud

In local equilibrium, i.e., in the limit when 7 — 0,8 and 7
coincide, respectively, with T and p, the local-equilibrium
expressions for the absolute temperature and pressure.
Some researchers have proposed that § and 7 are the ab-
solute temperature and pressure which are actually mea-
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sured in nonequilibrium states instead of T' and p, which
are defined by the usual expressions (3/2)kT/m = u and
p = nkT, k being the Boltzmann constant, m the mass
of a molecule, and n the number of particles per unit
volume.

Other authors, instead, do not attribute to 8 and n
a real physical meaning except in local equilibrium. In
any case, in spite of the lengthy and subtle arguments
on the meaning of these quantities [8, 9], the final answer
should come from experience. Here, we examine two pos-
sible experiments which could shed some light on this
subtle topic and which complement a previous more ab-
stract proposal [8a,b]. In fact, the present analysis, which
is centrally concerned with the proposal of experiments,
will also illustrate the subtleties behind this difficult sub-
ject. The physical situation to be considered consists of
a filled tank gas placed between two heat reservoirs at
different temperatures, so that a constant heat flux g is
maintained through the system (see Fig. 1).

Some aspects of this problem could probably be dealt
with by starting from the Boltzmann equation. The
problem is, however, that there are several different
methods to solve the Boltzmann equation, and that there
are several different boundary conditions compatible with
given macroscopic information. Thus a macroscopic anal-
ysis of some of the questions arising in the context of
second-order transport theories could be useful to obtain
new criteria to choose among the different results ob-
tained from the Boltzmann equation by different meth-
ods.

The plan of the paper is as follows. In Sec. II, the
thermal and caloric equations of state for a monatomic
dilute gas under a stationary heat flux are obtained, their
deviations with respect to the classical local-equilibrium
results underlined, and a microscopic interpretation of
the generalized temperature is given. Section III an-
alyzes two possible experiments which could show the
consequences of the generalized temperature; on the one
hand, we study the Doppler broadening of spectral lines
in a dilute gas under a heat flux and, on the other, we
show the modifications that extended thermodynamics
introduces in the speed of a low-frequency sound wave
traveling perpendicular to the temperature gradient. Fi-
nally, Sec. IV is devoted to some concluding remarks.
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II. EQUATIONS OF STATE OF A DILUTE GAS
UNDER A HEAT FLUX

When one takes into account that for monatomic ideal
gases A = 3(k*Tn/m)r, one may obtain from (1) the
following explicit expression for the specific entropy of
the gas,

27 k
40 mu3

Thus, one finds for the generalized temperature

Os 1 81 k
=== ==
(6u>v,1 T *

40 mut”
and for the thermal equation of state

m _ (0Os _ P _

since the nonequilibrium part in (4) yields a vanishing
contribution. Therefore, it turns out that with this defi-
nition of pressure the thermal equation of state for ideal
gases has the same form as in equilibrium, but with
and 0 instead of p and T. Note, of course, that Eq. (6)
does not imply that p =7 and T = 6.

Relation (6) allows a simple microscopic interpretation
for the nonequilibrium temperature. The pressure tensor
under a heat flux takes the form [9]

s(u,v,J) = seq(u,v) —

(4)

()

P =7U + aqq, (7

with U the unit tensor and a a scalar quantity satisfying
the relation trP = 3p, as imposed by the microscopic
expressions for the local-equilibrium temperature, u =
%kT /m, and for the pressure tensor P, namely

Py = [mvs ) av, (®)

where f denotes the nonequilibrium distribution function
and v the molecular velocity. If one assumes that the
heat flux is in the y direction, one has, according to (6)—

(8),
Pac:n =7 =nkl = nm('UZ)neq» (9)

with (, )neq standing for the average in the nonequilib-
rium steady state. Therefore, the nonequilibrium tem-
perature § may be interpreted as
m m m
6= ?(”i)neq = I('Uf)neq # f(vbneq' (10)

This relation shows a breakdown of the equipartition law
in the presence of a heat flux.

On the other side, one defines the local-equilibrium
temperature T by its usual relation with the mean kinetic
translational energy of the particles as [6]

1m
T = gz(v: + vZ + vf)neq. (11)

Then, one could use kinetic temperatures 6, =
(m/k)(vﬁ)» 0, = (m/k)(vf), and 6, = (m/k)(vi), an
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one finds from (5) that 6, =60, = 6 < T, and from (11)
that 6, = 3T — 26 > T. Note that (9), (10), and (11) do
not depend on the explicit expression of the microscopic
distribution function.

Thus, the presence of a heat flux has some similarities
with the presence of a magnetic field B in producing an
anisotropy in the system implying different kinetic tem-
peratures along B and perpendicular to B. The effect of
the magnetic field, however, is dynamical, since it exerts
a force on moving particles, whereas the influence of q is
purely statistical.

Equation (7) predicts different results for the pressure
measured in the z and y directions in the nonequilibrium
steady state. According to (7), this difference amounts
to aq?. In order to express this value in terms of directly
measurable quantities, one uses the condition trP = 3p
and the thermal equation of state (6) to obtain

Py, — P., = aq® = 3nk(T - 0). (12)

Finally, with the help of the caloric equation of state (5),
the pressure difference writes

6 _m 2_6nm ,
5n2k363 1 T 5 73

Then, for measures taken at the same height, extended
thermodynamics predicts that the pressure in the y direc-
tion is higher than in the # and z directions, and conse-
quently the work required for a volume change is smaller
if the force is applied in the z or z directions than in the
y direction.

Let us also notice that our thermodynamic pressure m
corresponds to the minimum eigenvalue of the pressure
tensor P. This is in agreement with the conjecture raised
by Evans in view of the results of his very extensive and
systematic numerical simulations of systems in steady
states, which he justified by pointing out that “if the en-
tropy is related to the minimum reversible work required
to accomplish a virtual volume change in a nonequilib-
rium steady state, then ndV is the minimum pV work
that is possible” [10].

Py — P = (13)

III. TWO POSSIBLE EXPERIMENTS

The aim of this section is to draw the general lines
for two possible experiments which could show the dif-
ferences between 6 and T'.

A. Doppler broadening of spectral lines

The anisotropy in the pressure tensor could be detected
by careful dynamical analyses of the forces acting along
the heat flux direction or perpendicular to it. However,
there is still a better method which could be much more
sensitive to the anisotropy in the second moments of the
velocity. Such a method would consist in exciting, by
means of two crossed laser beams, a small region of the
fluid, and in measuring the width of the spectral lines
of the relaxation signal along the direction of the heat
flux and perpendicular to it. According to our predic-
tions, the Doppler broadening of the lines (which would
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be observable at low pressures, in a domain consistent
with our dilute gas limit) should be less in the direction
perpendicular to the heat flux than along the heat flux,
because the former is proportional to (v2) and the lat-
ter to (v2), whose expressions are given after (11). More
explicitly, one would have for the width of the spectral
lines measured along the = and y directions [11]

(a0, =222 < T (14)
(Av)y = ﬁ\/k(ﬂ__—‘z") S @\/E_f, (15)

with (Av) the root mean square of the intensity distribu-
tion, vg the frequency of the light emitted by a molecule
at rest, and c the light speed.

This difference between (v2) and (vZ) may be under-
stood from a microscopic point of view by considering the
following form for the steady state distribution function

[9]:
F=Aexp [—ﬁ%mvz] [1 oy (lmvz _ i) v

o - 3]

2
with v the peculiar velocity of the gas molecules. Such a
distribution function is the second-order development of
the maximum entropy distribution function of the form

(16)

- B me? oy (L2~ 2
f—Aexp[ ﬁzm'u ¥ (zmv 25)V],

where 8 and v are Lagrange multipliers related to the
mean energy and to the mean heat flux, and are deter-
mined from

(17)

~/f%mv2 dv = —gnkT,

1
‘/fimvzv dv = q,

and A is a normalization constant. This form of the
distribution function has been discussed explicitly in [9],
so that we will not comment on it here with more detail.
It must be noted that up to first order, one recovers the
Grad distribution function. However, the higher-order
Grad analyses do not predict any change in the diagonal
second moments (vZ), (vZ), and (v2) because they use for
the distribution function a development of the form

2

f=Aexp [_mv ] [1+ aO(r,t) : H'(v)|,
7| |12

(18)

with H'(v) orthonormalized Hermite polynomials of the
velocity whose contribution to (vZ), (vZ), and (vZ) are
null, due to the orthogonality conditions. Therefore, in
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Grad’s expansion (3 is always equal to 1/kT, with T the
local equilibrium temperature, and (v2) = (vZ) = (vZ) =
kT /m, in contrast to what happens in (16).

To go deeper inside the differences between (16) and
(18), note that one may assume different boundary con-
ditions on the wall, and that the Boltzmann equation
by itself cannot decide which boundary conditions are
the most satisfactory ones. For instance, a prescribed
heat flux q may be achieved with very different prescrip-
tions for higher-order moments of f. Indeed, in the Grad
thirteen-moment expansion one assumes that the mean
values of H!(v) for I > 3 vanish identically. However, one
could have the same value of q but with many different
possibilities concerning the mean values of H'(v), I > 3.
Thus, the prescription of given values for the mean in-
ternal energy and mean heat flux are not enough to sin-
gle out one specific solution for the distribution function.
The distribution function (16) is also compatible with the
given mean values of the energy and the heat flux, but it
yields nonvanishing mean values for H!(v), (I > 3). Both
(16) and (18) could be introduced into the Boltzmann
equation to obtain the evolution equations for v(r,t) as
for the set a!)(r,t). Which of (16) or (18) gives a better
description of the actual situation thus requires an analy-
sis of second-order terms in the equations of state, which
is one of the differences that follows from (16) and (18).
Another possibility would be to measure the higher-order
moments of the distribution function. Here we have em-
phasized the differences in the equations of state because
they have received almost no attention as compared with
the analysis of higher-order transport equations.

B. Sound speed in a dilute gas under a heat flux

In this section, we analyze how the nonequilibrium cor-
rections to the equations of state affect the speed of a
sound wave propagating perpendicular to the heat lux—
i.e., in the z direction—thus pointing out another exper-
imental test of the theory by measuring the velocity of a
sound wave under nonequilibrium stationary situations.

The experimental situation should be as follows
(Fig. 1). A tank containing a monatomic gas is placed be-

8,

<« H—>

AD 4 q°l<fv=—e L

5,

FIG. 1. Picture of the physical situation. A steady flux
qo is maintained through a gas container by keeping it in
contact with two heat reservoirs at different temperatures 6,
and 62. A sound generator G, a sound detector D, and a
thermometer A are placed at the same height. The sound
wave travels perpendicular to the heat flux.
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tween two heat baths at different temperatures, so that
the system reaches a steady situation characterized by
vertical temperature and density profiles, and a constant
heat flux qo crossing the whole system. Obviously, the
hot reservoir is placed at the top and the cold one at the
bottom, in order to prevent any convective instability.
A thermometer, a sound generator, and a detector are
placed at the same height yo. Our purpose is to evalu-
ate the velocity of a sound wave which travels along this
horizontal layer. To this end, we proceed as usual by
linearizing the mass and momentum balance equations

dp

@V .v=0 19

a TPV V=D (19)
dv

PE?+V-P—0 (20)

around the stationary state characterized by p = po(y),
qo, and v = 0.

For long wavelengths, we will consider, as usual, that
gradients in the direction of wave propagation are small
enough as to neglect dissipative effects, i.e., viscous ef-
fects are negligible and q’, the perturbation to the heat
flux due to the sound wave, is small compared to qg, that
is to say, |q’'| < |qo|. Then, the pressure tensor P has no
contribution due to viscosity and reduces to expression
(7). It is immediate to find that a perturbation propagat-
ing along the z direction satisfies a wave equation with
velocity ¢ = (Gﬂ/ap)i,/.f . The latter derivative is taken
at constant s and q since it is assumed that the process
is carried out without net heat exchange, and that the
heat flux deviations with respect to the stationary value
qo are negligible according to the long wavelength con-
dition. To assume qo # O is not contradictory with the
assumption that the net heat exchange during the pro-
cess is zero, because qq is constant along the y direction
so that the heat input is equal to the heat output.

To evaluate the partial derivative, we start from the
condition of vanishing heat exchange. Since 7 is the ac-
tual pressure in the nonequilibrium state, one has for
the differential work in an infinitesimal volume change

dW = —mdv, so that the corresponding expression for
the heat exchange yields
dQ = du + wdv = 0. (21)

The fact that d@Q = 0 does not exactly imply that ds = 0
in (2); however, the contributions of qo to 7 are of the
order g2, whereas the contribution to ds of the last term
in (2) is of the order qq - g, i.e., much smaller than |q3|.
Therefore, the exact relationship between heat and the
generalized entropy only plays an important role in the
equations for 6 and 7, which have been given in (5) and
(6), but it has a negligible influence on the expression for
the sound speed.

In order to evaluate the differential of energy, we use
the equations of state (5) and (6). By using that
T = 2mu/3k for a monatomic gas, Eq. (5) yields for
the specific internal energy, up to order q2,

3k 2 m3v? 3 31
Y= om gwqﬁ] ="l ()

o[+ 2
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the last equality coming from Eq. (6). Finally, by differ-
entiating (22), Eq. (21) leads for the sound speed, after
some straightforward calculations up to order q3,

_(Om L 2 m L\ _
‘= (8_p)s,q_ V 3m (1+ 5k07r2q0) =coll+24),

(23)

where we have denoted with ¢o the local-equilibrium
sound speed, and with A the nonequilibrium correction.
Equation (23) predicts a modification in the sound ve-
locity for the gas in a steady nomnequilibrium situation
with respect to the local-equilibrium result. Let us now
examine under which experimental conditions these cor-
rections could be experimentally attainable.

Let us first notice that the deviation from the local-
equilibrium result A can be written in a simpler way by
using the microscopic expression for the thermal conduc-
tivity of a monatomic gas. Direct calculations yield, aside
from a factor of order unity,

A~ (l%)z, (24)

with [ the mean free path of the molecules. The temper-
ature gradient can be obtained by using the fact that in
the stationary state, qo is uniform over the system. Since
the thermal conductivity for a monatomic gas depends on
temperature as A oc §1/2 [11], one has

3/2 _ 53/2
V63/? = const = —01 I b2 ,

6, and 0, being the temperatures of the hot and cold
reservoirs, respectively, and L is the separation between
them, that is to say, the height of the sample. Therefore,
by introducing (25) into (24), the Knudsen number K
satisfies the relation

l
K=1

(25)

93/2

~ ALl/2 o
~ AY 932 _ g3/2° (26)
1 2

For the regime to be diffusive, as we are considering in
(25), it must be satisfied that {/L <« 1. This imposes
some restrictions on the value of the temperature differ-
ence between the reservoirs, and on the temperature 6o
of the layer where the sound wave is traveling. In par-
ticular, it is concluded that the temperature difference
should be large, as it must be in the conditions of the ex-
periment, and that the temperature at which the sound
speed is measured 6y must be small. In order to establish
how small this temperature should be, by taking 68, > 65,
Eq. (26) can be rearranged to give

0o K2/3

E ~ Al/3°

If one requires K < 102 and A = 1072, that is to say, for

a nonequilibrium correction of the order of 1%, relation
(27) implies 69 < 0.26,.

Then, if one takes for the temperatures of the baths

6; = 1000 K and 0, = 200 K, and for the measuring
temperature 6o = 250 K, the Knudsen number amounts

(27)
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to I/L = 1.2 x 1072, so that for a typical value L = 10
cm, one has [ ~ 1 mm. The previous value for the mean
free path determines the density of the gas in the layer
where the measure must be taken; indeed the expression
! = 1/nnd?, with d the molecule diameter (7 here is
the m number, not to be confused with the generalized
pressure), implies that for a typical value of d = 4 A, the
number density in order that ! ~ 1 mm is n ~ 6 x 102!
m~3, and the corresponding generalized pressure 7 =
nk@, for the temperature §y = 250 K adopted above,
amounts to m ~ 20 Pa. Let us remark that, in contrast
to the temperature or the density, which depend on the
height y, the pressure is uniform over the system due
to the stationary condition with vanishing barycentric
speed.

On the other hand, in order to be qualified to treat
the medium as a continuum, as we did in the calculation
of the sound wave, it is necessary that the length of the
system in the z direction H be much larger than the mean
free path. This constrains the value of H to a minimum
of, say, 10 cm, for the values of the parameters taken
before.

IV. CONCLUDING REMARKS

The analysis of temperature in nonequilibrium situa-
tions is subtle and complex, and it is difficult to pro-
pose experiments to settle this conflictive but fundamen-
tal topic. Therefore, we feel that a theoretical effort is
needed to propose different experiments, whose practical
realization would require, of course, much care. In this
paper, we have proposed two such experiments more re-
alistic than those proposed up to now. Furthermore, we
have seen that the nonequilibrium temperature 6 is not
contradictory with the definition of a local-equilibrium
temperature T related to the mean energy. The prob-
lem is, of course, whether § or T is measured in a given
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experiment.

We have seen that the nonequilibrium temperature 6
could have a kinetic definition in terms of (v2)neq, but
that this does not imply that 6 is equal to 7', which is
related to (v2 + v2 + v2)neq- The anisotropy due to the
presence of the heat flux q causes the second moments
of the velocity distribution to be such that (vZ)neq #
(v2 + v2 + vZ)neq/3, the first average related to 6, and
the second one to T, thus breaking the equipartition of
energy. Having a kinetic interpretation of § and T is
useful for numerical simulations, in which such averages
can be easily obtained.

The relation of the generalized temperature with the
second moments of the velocity distribution is also inter-
esting from the point of view of a parallelism between
our result and those of Keizer [12]. Indeed, the latter
author has proposed measuring nonequilibrium temper-
atures by evaluating the second moments of the fluctu-
ations of macroscopic quantities. However, he has not
considered the effect of the relaxation time in heat trans-
port in fluids, where he has always used Fourier’s law. As
a consequence, he has not considered the situation dealt
with in this paper.
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